91 research outputs found

    Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer

    Get PDF
    Tyrosine kinase (TK) fusions are attractive drug targets in cancers. However, rapid identification of these lesions has been hampered by experimental limitations. Our in silico analysis of known cancer-derived TK fusions revealed that most breakpoints occur within a defined region upstream of a conserved GXGXXG kinase motif. We therefore designed a novel DNA-based targeted sequencing approach to screen systematically for fusions within the 90 human TKs; it should detect 92% of known TK fusions. We deliberately paired ā€˜in-solutionā€™ DNA capture with 454 sequencing to minimize starting material requirements, take advantage of long sequence reads, and facilitate mapping of fusions. To validate this platform, we analyzed genomic DNA from thyroid cancer cells (TPC-1) and leukemia cells (KG-1) with fusions known only at the mRNA level. We readily identified for the first time the genomic fusion sequences of CCDC6-RET in TPC-1 cells and FGFR1OP2-FGFR1 in KG-1 cells. These data demonstrate the feasibility of this approach to identify TK fusions across multiple human cancers in a high-throughput, unbiased manner. This method is distinct from other similar efforts, because it focuses specifically on targets with therapeutic potential, uses only 1.5ā€‰Āµg of DNA, and circumvents the need for complex computational sequence analysis

    Comprehensive Genomic Profiling of Pancreatic Acinar Cell Carcinomas

    Get PDF
    significantly enriched for genomic alterations (GAs) causing inactivation of DNA repair genes (45%); these GAs have been associated with sensitivity to platinum-based therapies and PARP inhibitors. Collectively, these results identify potentially actionable GAs in the majority of PACCs, and provide a rationale for using personalized therapies in this disease. Statement of Significance PACC is genomically distinct from other pancreatic cancers. Fusions in RAF genes and mutually exclusive inactivation of DNA repair genes represent novel potential therapeutic targets that are altered in over two-thirds of these tumors

    Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network

    Get PDF
    Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis
    • ā€¦
    corecore